Research and Application of Materials Science

Structure evolution in undercooled CoCrNi medium entropy alloys by glass fluxing method

YUSubo (State Key Laboratory of Metastable Materials Science and Technology, Yanshan University), SHERSTNEVAleksandr (State Key Laboratory of Metastable Materials Science and Technology, Yanshan University), MARKOVSKIIMikhail (State Key Laboratory of Metastable Materials Science and Technology, Yanshan University), KATAITSEVADaria (State Key Laboratory of Metastable Materials Science and Technology, Yanshan University), LIGong (State Key Laboratory of Metastable Materials Science and Technology, Yanshan University)

Abstract


Undercooling of ternary CoCrNi medium entropy alloy (MEA) was achieved by molten glass fluxing method. The influence of undercooling on microstructure and mechanical properties of was investigated. The microstructure changes during the undercooling process identified by transmission electron microscope and scanning electron microscope shows that the grain size and intergranular phase all change after the undercooling treatment. The yield strength of the ternary MEA increased significantly after undercooling treatment, which attribute to the refined grain size and the formation of the new phase. Undercooling method can be used as a potential method to modify the microstructure and improve the mechanical properties of MEAs.

Keywords


Medium-entropy alloy; undercooling; microstructure; mechanical properties

Full Text:

PDF

References


J.W. Yeh. Recent progress in high-entropy alloys. European Journal of Control [J]. 2006(31): 633-648.

J.W. Yeh, S.K. Chen, S.J. Lin, et al. Nanostructured high‐ Entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials [J]. 2004(6): 299-303.

Y. Zhang, T.T. Zuo, Z. Tang, et al.. Microstructures and properties of high-entropy alloys. Progress in Materials Science [J]. 2014(61): 1-93.

B. Cantor, I.T.H. Chang, P. Knight. Microstructural development in equiatomic multicomponent alloys. Materials Science and EngineeringA [J]. 2004(213): 375-377.

J.W. Yeh, S.J. Lin, T.S. Chin. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with

multiprincipal metallic elements. Metallurgical and Materials Transactions A [J]. 2004(35): 2533-2536.

C.J. Tong, Y.L. Chen, J.W. Yeh, et al.. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical & Materials Transactions A [J]. 2005(36): 881-893.

B.S. Murty, J.W.; Yeh, et al.. Chapter 1–A Brief History of Alloys and the Birth of High-Entropy Alloys.M.Boston: Butterworth-Heinemann Press [D], 2014.

M.R. Chen, S.J. Lin, J.W. Yeh, et al.. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metallurgical and Materials Transactions A [J]. 2006(37):

-1369.

P.K. Huang, J.W. Yeh, T.T. Shun, et al.. Multi‐principal‐ element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials [J]. 2004(6): 74-78.

A. Poulia, E. Georgatis, A.E. Lekatou, et al.. Microstructure and wear behavior of a refractory high entropy alloy. International Journal of Refractory Metals and Hard Materials [J]. 2016(57): 50-63.

M.D. Zhang, L.J. Zhang, J.T. Fan, et al.. Novel Co-free CrFeNiNb0.1Tix high-entropy alloys with ultra high hardness and strength, Materials Science & Engineering A [J], 2019,764(9): 138212-138221.

W.Q. Dong, Z. Zhou, M.D. Zhang, et al.. Applications of high-pressure technology for high-entropy alloys: A review, Metals, 2019(9): 867.

X. M. Liu, J. T. Fan, X. S. Liu, et al.. Nonlinear vibration of Al-Al based high entropy alloy circular sandwich panel, AIP Advances, 2019, 9(3): 035351.

J. T. Fan, L. J. Zhang, G. Li, et al.. A novel high-entropy alloy with dendrite-composite microstructure and remarkable compression performance, Scripta Materialia, 2019(159): 18–23.

Y. Shi, B. Yang, P.K. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review.J. Metals - Open Access Metallurgy Journal.2017(7): 43.

X. S. Liu, R. Li, X.F. Fan, et al.. Excellent strength-ductility combination in Co36Cr15Fe18Ni18Al8Ti4Mo1 multi-principal element alloys by dual-morphology B2 precipitates strengthening,Journal of Materials Science & Technology [J]. 2023(134): 60–66.

A.X. Li, P.F. Yu, Y.P. Gao, et al.. Ultra-high strength and excellent ductility high entropy alloy induced by nano-lamellar precipitates and ultrafine grain structure, Materials Science & Engineering A [J]. 2023(862): 14428.

D.B. Miracle, O.N. Senkov. A critical review of high entropy alloys and related concepts. Acta Materialia [J].2017(122): 448-511.

M.H. Jiang, Y.P. Gao, Y.Y. Wang, et al.. Study on structure evolution of CoCrFeNi high entropy alloy in containerless processing using neutron differaction, Nuclear Analysis [J]. 2022(3): 100034.

Z. Wu, H. Bei, G.M. Pharr, et al.. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia [J]. 2014(81): 428-441.

C. Niu, A.J. Zaddach, A.A. Oni, et al.. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Applied. Physics. Letter [J].2015(106): 161906.

D.M. Herlach, Non-equilibrium solidification of undercooled metallic melts. Advances in Space Research [J].1991(12): 177.

C. Suryanarayana, Phase formation under non-equilibrium processing conditions: rapid solidification processing and mechanical alloying. Journal of Materials Science [J]. 2018(53): 13364-13379.

X. Bai, Y. Wang, C. Cao, Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy. Chinese Physics B [J]. 2018(27): 305-309.

A. Munitz, A. Venkert, P. Landau, et al.. Microstructure and phase selection in supercooled copper alloys exhibiting metastable liquid miscibility gaps. Journal of Materials Science [J]. 2012(47) 7955-7970.

J.H. Perepezko. Solidification of highly supercooled liquid metals and alloys. Journal of Non-Crystalline Solids [J]. 1993(2): 463-472.

J.H. Perepezko, G. Wilde. Amorphization and alloy metastability in undercooled systems. Journal of Non-Crystalline Solids [J]. 2000(274): 0-281.Research and Application of Materials Science  Vol. 4  No.2  2022 9

T. David. Kinetics of Solidification of Supercooled Liquid Mercury Droplets. Journal of Chemical Physics [J]. 1952(20): 411-424.

J.S. Li, W.J. Jia, J. Wang, et al.. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by

supercooling method. Materials and Design [J].2016(95): 183–187.

R. Li, X.S Liu, P.F. Yu, et al.. Unveiling the phase evolution and mechanical properties of Ni1.5Co1.5CrTix alloy

composites with ultrafine/nano structure, Materials and Design [J]. 2022(223): 111165

L.L. Lacy, M.B. Robinson, T.J. Rathz. Containerless undercooling and solidification in drop tubes. Journal of

Crystal Growth [J]. 1981(51): 47-60.

W.H. Hofmeister, M.B. Robinson, R.J. Bayuzick. Undercooling of pure metals in a containerless, microgravity environment. J. Applied Physics Letters [J]. 1986(49): 1342-1344.

J.S. Li, W.J. Jia, J. Wang, et al.. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method. Materials & Design [J]. 2016(95): 183-187.

A.M. AMullis, P.C. Bollada, P.K. Jimack, Phase-Field Modelling of Intermetallic Solidification. M. TMS 2018

th Annual Meeting & Exhibition Supplemental Proceedings [D], 2018.

Y.L. Liu, L. Luo, Z.S. Ming, et al.. Microstructure and mechanical properties of Al-5.5Fe-1.1V-0.6Si alloy solidified under near-rapid cooling and with Ce addition. Rare Metals [J]. 2018(12): 1070-1075.

J. Wang, T. Guo, J. Li, et al.. Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy. Materials Chemistry and Physics [J]. 2018(210): 192-196.

X. Hao, Y.G. Li, Y. Hu, et al.. Effect of the Third Element Ni on the Solidification Microstructure of Undercooled Cu-40 wt.% Pb Monotectic Alloy Melt. Advances in Materials Science and Engineering [J]. 2019(2): 1-7.

J. Wang, G. Tong, J. Li, et al.. Microstructure and mechanical properties of non-equilibrium solidified

CoCrFeNi high entropy alloy. Materials Chemistry and Physics [D], 2017.

R.D. Li, P.D. Niu, T.C. Yuan, et al.. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy:

Processability, non-equilibrium microstructure and mechanical property. Journal of Alloys and Compounds: An

Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics [D], 2018.

Q. Gao, X.S. Jiang, H.L. Sun, et al.. Effect mechanism of cryogenic treatment on ferroalloy and nonferrous alloy and their weldments: a review. Materials Today Communications [J]. 2022(1): 104830.

X.W. Hong, C.H. Hsueh. Effects of yttrium addition on microstructures and mechanical properties of CoCrNi

medium entropy alloy. Intermetallics [J]. 2022(140): 107405.

H.W. Deng, Z.M. Xie, B.L. Zhao, et al.. Tailoring mechanical properties of a CoCrNi medium-entropy alloy by controlling nanotwin-HCP lamellae and annealing twins. Materials Science and Engineering [J]. 2019(744): 241-246.

J.P. Liu, J.X. Chen, T.W. Liu, et al.. Superior strength-ductility CoCrNi medium-entropy alloy wire.

Scripta Materialia [J].2020(181): 19-24.

B. Gwalani, T. Torgerson, S. Dasari, et al.. Influence of fine-scale B2 precipitation on dynamic compression and wear properties in hypo-eutectic Al0.5CoCrFeNi high-entropy alloy. Journal of Alloys and Compounds: An

Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics [J]. 2021, 853(1): 5.

Z.Y. Jia, S.Z. Zhang, J.T. Huo, et al.. Heterogeneous precipitation strengthened non-equiatomic NiCoFeAlTi

medium entropy alloy with excellent mechanical properties. Materials Science and Engineering [J]. 2022(834):142617.

L. Zhang, X. Du, L. Zhang, et al.. Achieving ultra-high strength in a precipitation-hardened CoCrNi-based medium-entropy alloy with partially recrystallized microstructure and heterogeneous grains [J]. Vacuum, 2021, 188(28):110169.




DOI: https://doi.org/10.33142/rams.v4i2.8464

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Subo YU, Aleksandr SHERSTNEV, Mikhail MARKOVSKII, Daria KATAITSEVA, Gong LI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.