Effects of Nickel on the Microstructure, Mechanical properties and Corrosion Resistance of CoCrFeNixAl0.15Ti0.1 High Entropy Alloy
Abstract
Keywords
Full Text:
PDFReferences
E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys,Nature Reviews Materials [J].2029, 4(8): 515-534.
Q. Ding, Y. Zhang, X. Chen, et al.. Tuning elementdistribution, structure and properties by composition inhigh-entropy alloys, Nature [J].2019, 574(7777): 223-227.
C.M. Lin, H.L. Tsai, H.Y. Bor. Effect of aging treatment onmicrostructure and properties of high-entropyCu0.5CoCrFeNi alloy, Intermetallics [J].2010,18(6):1244-1250.
G. Laplanche, A. Kostka, O.M. Horst, et al.. Microstructureevolution and critical stress for twinning in theCrMnFeCoNi high-entropy alloy, Acta Mater [J]. 2016(118):152-163.
X. Yang, Y. Zhang. Prediction of high-entropy stabilizedsolid-solution in multi-component alloys, Mater. Chem.Phys. 2012,132(2): 233-238.
Z.G. Wang, W. Zhou, L.M. Fu, et al.. Effect of coherent L12nanoprecipitates on the tensile behavior of a fcc-basedhigh-entropy alloy, Mater. Sci. Eng. 2017(696): 503-510.
W. Wang, W. Qi, L. Xie, X. Yang, J. Li, Y. Zhang,Microstructure and Corrosion Behavior of(CoCrFeNi)95Nb5 High-Entropy Alloy Coating Fabricated byPlasma Spraying, Materials. 2019,12(5): 694.
W. Qi, W. Wang, X. Yang, et al.. Effect of Zr on phaseseparation, mechanical and corrosion behavior ofheterogeneous CoCrFeNiZrx high-entropy alloy, J Mater SciTechnol. 2022(109): 76-85.
W. Huo, F. Fang, H. Zhou, et al.. Remarkable strength ofCoCrFeNi high-entropy alloy wires at cryogenic andelevated temperatures, Scripta Mater. 2017(141): 125-128.
P. Wu, K. Gan, D. Yan, et al.. A non-equiatomic FeNiCoCrhigh-entropy alloy with excellent anti-corrosionperformance and strength-ductility synergy, Corros. Sci.2021(183): 13.
H. C. Liu, C. W. Tsai. Effect of Ge addition on themicrostructure, mechanical properties, and corrosionbehavior of CoCrFeNi high-entropy alloys, Intermetallics.2021(132):47.
Y. Fu, J. Li, H. Luo, et al.. Recent advances onenvironmental corrosion behavior and mechanism ofhigh-entropy alloys, J Mater Sci Technol. 2021(80):217-233.
E. Nembach, G. Neite. Precipitation hardening ofsuperalloys by ordered γ′-particles, Prog. Mater Sci.1985,29(3): 177-319.
W. F. Miao, D. E. Laughlin. Precipitation hardening inaluminum alloy 6022, Scripta Mater. 1999,40(7): 873-878.
M. J. Yao, E. Welsch, D. Ponge, et al.. Strengthening andstrain hardening mechanisms in a precipitation-hardenedhigh-Mn lightweight steel, Acta Mater. 2017(140):258-273.
D. Chen, F. He, B. Han, et al.. Synergistic effect of Ti and Alon L12-phase design in CoCrFeNi-based high entropy alloys,Intermetallics. 2019(110):67-68.
W.H. Liu, T. Yang, C.T. Liu. Precipitation hardening inCoCrFeNi-based high entropy alloys, Mater. Chem. Phys.2018(210):2-11.
Y. Yu, F. He, Z. Qiao, et al.. Effects of temperature andmicrostructure on the triblogical properties ofCoCrFeNiNbx eutectic high entropy alloys, J. Alloys Compd.2019(775): 1376-1385.
W. Liu, J. He, H. Huang, et al.. Effects of Nb additions onthe microstructure and mechanical property of CoCrFeNihigh-entropy alloys, Intermetallics. 2015(60): 1-8.
H. Ma, C.H. Shek, Effects of Hf on the microstructure andmechanical properties of CoCrFeNi high entropy alloy, J.Alloys Compd. 2020(827):456.
H. Jiang, K. Han, D. Qiao, et al.. Effects of Ta addition onthe microstructures and mechanical properties of CoCrFeNihigh entropy alloy, Mater. Chem. Phys. 2018(210): 43-48.
F. Zheng, G. Zhang, X. Chen, et al.. A new strategy oftailoring strength and ductility of CoCrFeNi basedhigh-entropy alloy, Mater. Sci. Eng. 2020(774):98-102.
J.Y. He, H. Wang, H.L. Huang, et al.. Aprecipitation-hardened high-entropy alloy withoutstanding tensile properties, Acta Mater. 2016(102):187-196.
W. Wang, J. Wang, Z. Sun, et al.. Effect of Mo and agingtemperature on corrosion behavior of (CoCrFeNi)100-xMoxhigh-entropy alloys, J. Alloys Compd. 2020(812):152139.
Y. J. Hsu, W. C. Chiang, J. K. Wu, Corrosion behavior ofFeCoNiCrCux high-entropy alloys in 3.5% sodium chloridesolution, Mater. Chem. Phys. 2005,92(1): 112-117.
P. Muangtong, A. Rodchanarowan, D. Chaysuwan, et al..The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) highentropy alloy systems in chloride solution, Corros. Sci.2020(172):1-2.
Y. Shi, B. Yang, X. Xie, et al.. Corrosion of AlxCoCrFeNihigh-entropy alloys: Al-content and potential scan-ratedependent pitting behavior, Corros. Sci. 2017(119): 33-45.
Y. Shi, L. Collins, R. Feng, et al.. Homogenization ofAlxCoCrFeNi high-entropy alloys with improved corrosionresistance, Corros. Sci. 2018(133):120-131.
C. Liu, W. Peng, C.S. Jiang, et al.. Composition and phasestructure dependence of mechanical and magneticproperties for AlCoCuFeNix high entropy alloys, J Mater SciTechnol. 2019,35(6):1175-1183.
C. C. Juan, C. Y. Hsu, C. W. Tsai, et al.. On microstructureand mechanical performance of AlCoCrFeMo0.5Nixhigh-entropy alloys, Intermetallics. 2013,32(0):401-407.
W. Qi, W. Wang, X. Yang, et al.. Effects of Al and Tico-doping on the strength-ductility- corrosion resistance ofCoCrFeNi-AlTi high-entropy alloys, J. Alloys Compd.2022(925):166751.
S. Gangireddy, B. Gwalani, R.S. Mishra. Grain sizedependence of strain rate sensitivity in a single phase FCChigh entropy alloy Al0.3CoCrFeNi, Mater. Sci. Eng.2018(736): 344-348.
J. Su, D. Raabe, Z. Li. Hierarchical microstructure design totune the mechanical behavior of an interstitial TRIP-TWIPhigh-entropy alloy, Acta Mater. 2019(163): 40-54.
N.K. Adomako, G. Shin, N. Park, et al.. Laser dissimilarwelding of CoCrFeMnNi-high entropy alloy and duplexstainless steel, J Mater Sci Technol. 2021(85): 95-105.
W.H. Liu, Z.P. Lu, J.Y. He, et al.. Ductile CoCrFeNiMox highentropy alloys strengthened by hard intermetallic phases,Acta Mater. 2016(116): 332-342.
T. Yang, Y.L. Zhao, J.H. Luan, et al..Nanoparticles-strengthened high-entropy alloys forcryogenic applications showing an exceptionalstrength-ductility synergy, Scripta Mater. 2019(164):30-35.
M. H. Cai, C. Y. Lee, Y. K. Lee. Effect of grain size on tensileproperties of fine-grained metastable β titanium alloysfabricated by stress-induced martensite and its reversetransformations, Scripta Mater. 2012,66(8): 606-609.
O. León-García, R. Petrov, L.A.I. Kestens. Void initiation atTiN precipitates in IF steels during tensile deformation,Mater. Sci. Eng. 2010,527(16-17): 4202-4209.
J. He, N. Li, S.K. Makineni, et al.. Effects of minor Nballoying on the thermal stability and mechanical responsesof a γ/γ′ type high-entropy alloy with high Fe content,Mater. Sci. Eng. 2022(851):6-8.
Y. Wang, J. Jin, M. Zhang, et al.. Influence of plasticdeformation on the corrosion behavior of CrCoFeMnNihigh entropy alloy, J. Alloys Compd. 2022(891):79-92.
J. B. Lee. Effects of alloying elements, Cr, Mo and N onrepassivation characteristics of stainless steels using theabrading electrode technique, Mater. Chem. Phys.2006,99(3): 224-234.
Z. Xu, H. Zhang, X. Du, et al.. Corrosion resistanceenhancement of CoCrFeMnNi high-entropy alloy fabricatedby additive manufacturing, Corros. Sci. 2020(177):34-36.
H. Luo, Z. Li, A.M. Mingers, et al.. Corrosion behavior of anequiatomic CoCrFeMnNi high-entropy alloy compared with304 stainless steel in sulfuric acid solution, Corros. Sci.2018(134): 131-139.
DOI: https://doi.org/10.33142/rams.v4i2.8468
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Wu QI, Yitian SU, Xiao YANG, Guannan ZHA, Yi ZHAO, Ya ZHANG, Wenrui WANG
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.