A Survey of Remote Sensing Image Segmentation Based on Deep Learning
Abstract
Keywords
Full Text:
PDFReferences
L. Huang, B. Jiang. Deep Learning-based Semantic Segmentation of Remote Sensing Images: A Survey [J]. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2023:1-28.
Q. An, Z. Pan. DRBox-v2: An Improved Detector With Rotatable Boxes for Target Detection in SAR Images [J]. IEEE Trans. Geosci. Remote Sens., 2019, 57(11): 8333-8349.
S. Li, W. Song. Deep Learning for Hyperspectral Image Classification: An Overview [J]. IEEE Trans. Geosci. Remote Sens., 2019, 57(9): 6690-6709.
R. Shang, M. Liu. Region-Level SAR Image Segmentation Based on Edge Feature and Label Assistance [J]. IEEE Trans. Geosci. Remote Sens., 202260: 1–16.
F. Gaudfrin, O. Pujol. A New Lidar Technique Based on Supercontinuum Laser Sources for Aerosol Soundings: Simulations and Measurements—The PERFALIS Code and the COLIBRIS Instrument [J]. IEEE Trans. Geosci. Remote Sens., 2023, 61: 1-21.
A. Ma, J. Wang. FactSeg: Foreground Activation-Driven Small Object Semantic Seg-mentation in Large-Scale Remote Sensing Imagery [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-16.
J.-H. Kim, Y. Hwang. GAN-Based Synthetic Data Augmentation for Infrared Small Target Detection [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-12.
N. Wang, B. Li. Ship Detection in Spaceborne Infrared Image Based on Lightweight CNN and Multisource Feature Cascade Decision [J]. IEEE Trans. Geosci. Remote Sens., 2021, 59(5): 4324-4339.
J. Kang, et al. DisOptNet: Distilling Semantic Knowledge From Optical Images for Weather-Independent Building Segmentation [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-15.
K. Heidler, L. Mou. HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-14.
Z. Lu, et al. An Iterative Classification and Semantic Segmentation Network for Old Landslide Detection Using High-Resolution Remote Sensing Images [J]. IEEE Trans. Geosci. Remote Sens., 2023, 61: 1-13.
DiResNet: Direction-Aware Residual Network for Road Extraction in VHR Remote Sensing Images.
Y. Wei, S. Ji. Scribble-Based Weakly Supervised Deep Learning for Road Surface Extraction From Remote Sensing Images [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-12.
K. Simonyan, A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition [J]. arXiv, 2015.
K. He, X. Zhang. Deep Residual Learning for Image Recognition [J]. arXiv, 2015.
C. Szegedy, et al. Going deeper with convolutions [C]. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE: Boston, MA, USA.
C. Zhang, W. Jiang. Transformer and CNN Hybrid Deep Neural Network for Semantic Segmentation of Very-High-Resolution Remote Sensing Imagery [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-20.
O. Tasar, S.L. Happy. ColorMapGAN: Unsupervised Domain Adaptation for Semantic Segmentation Using Color Mapping Generative Adversarial Networks [J]. IEEE Trans. Geosci. Remote Sens., 2020, 58(10): 7178-7193.
L. Zhang, M. Lan. Stagewise Unsupervised Domain Adaptation With Adversarial Self-Training for Road Segmentation of Remote-Sensing Images [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-13.
R. Strudel, R. Garcia. Segmenter: Transformer for Semantic Segmentation [C]. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE: Montreal, QC, Canada.
Z. Liu, et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [C]. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE: Montreal, QC, Canada.
C. Zhang, L. Wang. SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-13.
Y. Zhu, S. Newsam. DenseNet for dense flow [C]. In 2017 IEEE International Conference on Image Processing (ICIP), IEEE: Beijing.
R. Li, et al. Multiattention Network for Semantic Segmentation of Fine-Resolution Remote Sensing Images [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-13.
K. Cha, J. Seo. A Billion-scale Foundation Model for Remote Sensing Images [J]. arXiv, 2023.
S. Woo, et al. ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders [J]. arXiv, 2023.
X. Ding, X. Zhang. Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs.
P. Isola, J.-Y. Zhu. Image-to-Image Translation with Conditional Adversarial Networks [J]. arXiv, 2018.
Y. Li, T. Shi. SPGAN-DA: Semantic-Preserved Generative Adversarial Network for Domain Adaptive Remote Sensing Image Semantic Segmentation [J]. IEEE Trans. Geosci. Remote Sens., 2023, 61: 1-17.
L. Zhou, H. Yu. PU-GAN: A One-Step 2-D InSAR Phase Unwrapping Based on Conditional Generative Adversarial Network [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-10.
Q. Hou, C.-Z. Lu. Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition [J]. arXiv, 2022.
Z. Liu, et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [C]. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE: Montreal, QC, Canada.
D. Muhtar, X. Zhang. CMID: A Unified Self-Supervised Learning Framework for Remote Sensing Image Understanding [J]. IEEE Trans. Geosci. Remote Sens., 2023, 61: 1-17.
H. Zhang, et al. DGCC-EB: Deep Global Context Construction With an Enabled Boundary for Land Use Mapping of CSMA [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-15.
L. Ding, H. Tang. LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote Sensing Images [J]. IEEE Trans. Geosci. Remote Sens., 2021, 59(1): 426-435.
L.-C. Chen, G. Papandreou. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J]. arXiv, 2017.
M. Yang, K. Yu. DenseASPP for Semantic Segmentation in Street Scenes [C]. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE: Salt Lake City, UT, USA.
Q. Zhao, J. Liu. Semantic Segmentation With Attention Mechanism for Remote Sensing Images [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-13.
O. Ronneberger, P. Fischer. U-Net: Convolutional Networks for Biomedical Image Segmentation [J]. arXiv, 2015.
G. Lin, A. Milan. RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation [C]. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE: Honolulu, HI.
J. Fu, X. Sun. An Anchor-Free Method Based on Feature Balancing and Refinement Network for Multiscale Ship Detection in SAR Images [J]. IEEE Trans. Geosci. Remote Sens., 2021, 59(2): 1331-1344.
C. Peng, K. Zhang. Cross Fusion Net: A Fast Semantic Segmentation Network for Small-Scale Semantic Information Capturing in Aerial Scenes [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-13.
J. Zheng, A. Shao. Remote Sensing Semantic Segmentation via Boundary Supervi-sion-Aided Multiscale Channelwise Cross Attention Network [J]. IEEE Trans. Geosci. Remote Sens., 2023, 61: 1-14.
A. Li, L. Jiao. Multitask Semantic Boundary Awareness Network for Remote Sensing Image Segmentation [J]. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1-14.
V. Badrinarayanan, A. Kendall. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39(12): 2481-2495.
W. Liu, F. Su. Bispace Domain Adaptation Network for Remotely Sensed Semantic Segmentation [J]. IEEE Trans. Geosci. Remote Sens., 2020: 1-11.
M. Tang, K. Georgiou. Semantic Segmentation in Aerial Imagery Using Multi-level Contrastive Learning with Local Consistency [C]. In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), IEEE: Waikoloa, HI, USA.
H. Xue, C. Liu. DANet: Divergent Activation for Weakly Supervised Object Localization [C]. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE: Seoul, Korea (South).
J. Hu, L. Shen. Squeeze-and-Excitation Networks [J]. arXiv, 2019.
S. Zhang, et al. Attention Guided Network for Retinal Image Segmentation [J]. arXiv, 2019.
H. Zhao, J. Shi. Pyramid Scene Parsing Network [J]. arXiv, 2017.
T.-Y. Lin, P. Dollár. Feature Pyramid Networks for Object Detection [J]. arXiv, 2017.
K. He, G. Gkioxari. Mask R-CNN [J]. arXiv, 2018.
Z. Zheng, Y. Zhong. Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery.
B. Pan, X. Xu. DSSNet: A Simple Dilated Semantic Segmentation Network for Hyperspectral Imagery Classification [J]. IEEE Geosci. Remote Sens. Lett., 2020, 17(11): 1968-1972.
H. Noh, S. Hong. Learning Deconvolution Network for Semantic Segmentation [J]. 2015.
K. He, H. Fan. Momentum Contrast for Unsupervised Visual Representation Learning [J]. arXiv, 2020.
T. Chen, S. Kornblith. A Simple Framework for Contrastive Learning of Visual Representations [J]. arXiv, 2020.
J.-B. Grill. Bootstrap your own latent: A new approach to self-supervised Learning [J]. 2020.
DOI: https://doi.org/10.33142/mes.v7i2.17492
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Shibo SUN, Yunzuo ZHANG

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.