Research Status and Application Prospect of Aluminum Matrix Composites
Abstract
Keywords
Full Text:
UntitledReferences
ZHAO Y T. In-situ synthesized aluminum matrix composites [M]. Beijing: Science Press, 2016.
HUO X Y, ZHAO Y T, CHEN G, et al. Dry sliding wear properties and mechanism of high silicon aluminum alloy and its in-situ composites. Casting, 2007, 56 (4): 375-379.
ZHANG S, DONG X, ZHAO Y, et al. Preparation and wear properties of TiB2/Al-30Si composites via insitu melt reactions under high-energy ultrasonic field. Transactions of Nonferrous Metals Society of China, 2014, 24(12):3894-3900.
LE Y K, ZHANG Y Y. Research status of particulate reinforced aluminum matrix composites [J]. Development and application of materials, 1997 (05): 33-39.
NICK B, Aluminum matrix composites [J], Reinforced Plastics, 2019.
BRENDEL A, POPESCU C, SCHURMANN H, et al. Interface modification of SiC-fiber/copper matrix composites by applying a titanium interlayer [J]. Surface and Coatings Technology, 2005, 200(1-4):161-164.
YOU J H, BOLT H. Prediction of plastic deformation of fiber-reinforced copper matrix composites [J]. Journal of Nuclear Materials, 2002, 307(1):74-78.
EZHIL V S, VIZHIAN S P. Dry sliding wear behavior of basalt short fiber reinforced aluminum metal matrix composites [J]. Applied Mechanics & Materials, 2014, 592-594:1285-1290.
SU H, GAO W, FENG Z, et al. Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites [J]. Materials & Design, 2012, 36(none):590-596.
CHOU T W, NOMURA S, TAYA M, A self-consistent approach to the elastic stiffness of short-fiber composites. J Comp Mater,1980,14:178-188
MICHAL B, JOZEF I LADISLAV K. Influence of Al2O3 particles volume fraction on fracture mechanism in the Cu-Al2O3 system [J]. Materials Letters, 2000, 46(2).
XIAO R L, ZHENG H A, FU D S, et al.Preparation and Application Progress of Aluminum Matrix Composites[J]. Foundry technology, 2015 (5): 1118-1121.
ZHAO L Z, YANG M. Study on particle reinforced aluminum matrix composites [J]. Hot Processing Technology, 2011, 40 (20): 107-110.
KANG Y C, CHAN L I. Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites [J]. Materials Chemistry and Physics, 2004, 85(2-3):438-443.[15] IBRAHIM I A et al. Journal of Materials Science, 1991; 26: 1137-1156.
QUAN G F, CHAI D L, SONG Y J, et al. Effect of reinforcement phase type and content on mechanical properties of metal matrix composites [J]. Journal of Composites, 1999,16(2): 62-66.
WANG T, ZHANG F, ZHOU X L, et al. Effect of reinforcement phase morphology and distribution on mechanical properties of aluminum matrix composites [J]. Hot Working Process, 2009, 38 (16).
ROSCOE A N. The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 1952, 3:267-269.
ZHANG Q, XIAO B L, WANG W G, et al. Reactive mechanism and mechanical properties of in-situ composites fabricated from an Al- TiO2 system by friction stir processing. Acta Materialia, 2012, 60(20): 7090-7103.
HSU C J, CHANG C Y, KAO P W, et al. Al-Al3Ti nanocomposites produced in-situ by friction stir-processing. Acta Materialia, 2006, 54: 5241-5249.
VERHOEVEN J D. Fundamentals of physical metallurgy. New York: John Wiley & Sons, Inc., 1975.
EVANS A G, HUTCHINSON J W, MCMEEKING R M. Stress-strain behavior of metal matrix composites with discontinuous reinforcements [J]. Scripta Metallurgica Et Materialia, 1991, 25(1):3-8.
ARSENAULT R J, SHI N. Dislocation due to differences between the coefficients of thermal expansion [J]. Materials Science and Engineering, 1986, 81:175-187.
ARSENAULT R J, WANG L, FENG C R. Strengthening of composites due to microstructural changes in the matrix[J]. Acta Metall Mater, 1991, 39(1):47-57.
XUE J, WANG J, HAN Y F, et al. Behavior of CeO2 additive in in-situ TiB2 particles reinforced 2014 Al alloy composites [J]. Transactions of Nonferrous Metals Society of China, 2012, 22:1012-1017.
RAM N R, PRASADA R A K, DUTTA G L. et al. Forming behavior of Al-TiC in-situ composites [J]. Materials Science Forum, 2013, 765:418-422.
ZHANG Q, XIAO B L, WANG W G, et al. Reactive mechanism and mechanical properties of in-situ composites fabricated from an Al–TiO2 system by friction stir processing [J]. Acta Materialia, 2012, 60(20):7090-7103.
HAO X, NIE H, YE Z, et al. Mechanical properties of a novel fiber metal laminate based on a carbon fiber reinforced Zn-Al alloy composite[J]. Materials Science & Engineering A, 2018.
FENG G, LI Z, JACOB R J. et al. Laser-induced exothermic bonding of carbon fiber/Al composites and TiAl alloys [J]. Materials & Design, 2017, 126:197-206.
NIE M M, XU ZH F, YU H, et al. Effect of matrix alloy on fiber damage and fracture mechanism of continuous M40 graphite fiber / Al composite [J]. Journal of composite materials, 2016 (12).
PAWAR P B, WABALE R M, UTPAT A A. et al. A comprehensive study of aluminum based metal matrix composites: Challenges and Opportunities. Science Direct. 2018: 23937–23944.
YANG O, JIAN J W, XIN R D. et al. Experimental investigation on characteristics of pulsed plasma thrusters with the propellant samples of modified PTFE filled Si, Al and Al2O3 [J]. Vacuum, 2019: 163-171,
HASSAN S, HOSSEIN R B, MOHAMAD R N. The influence of volume fraction of SiC particles on the properties of Al/SiCp nanocomposites produced by powder metallurgy with high energy ball milling [J]. Russian Journal of Non-Ferrous Metals, 2016, 57(7).
SIVAIAH B, SARAVANAN M, AJAY D. Nano-indentation and Wear Characteristics of Al 5083/SiCp Nanocomposites Synthesized by High Energy Ball Milling and Spark Plasma Sintering[J]. Journal of Materials Science & Technology,2012,28(11):969-975.
HUANG G Q, WU J, HOU W T, et al. Microstructure, mechanical properties and strengthening mechanism of titanium particle reinforced aluminum matrix composites produced by submerged friction stir processing [J]. Materials Science & Engineering A, 2018:353–363.
LEKATOU A, KARANTZALIS A E, EVANGELOU A, et al. Aluminum reinforced by WC and TiC nanoparticles (exsitu) and aluminide particles (in-situ): Microstructure, wear and corrosion behavior [J]. Materials & Design, 2015, 65:1121-1135.
XI L X, ZHANG H, WANG P, et al. Comparative investigation of microstructure, mechanical properties and strengthening mechanisms of Al-12Si/TiB2, fabricated by selective laser melting and hot pressing[J]. Ceramics International, 2018: S0272884218316729.
BI J, LEI Z L, CHEN X, et al. Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition [J]. Ceramics International, 2019:5680–5692.
ZHANG S L, YANG J, ZHANG B R, et al. A novel fabrication technology of in-situ TiB2/6063Al composites: High energy ball milling and melt in-situ reaction [J]. J Alloys Compound, 2015, 629:215.
IBRAHIM I A et al. Journal of Materials Science, 1991; 26: 1137-1156.
CHEN X, FU D, TENG J, et al. Hot deformation behavior and mechanism of hybrid aluminum-matrix composites reinforced with micro-SiC and nano-TiB2 [J]. Journal of Alloys & Compounds, 2018.
ZHOU C,JI G,CHEN Z,et al. Fabrication interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J]. Materials and Design,2014(63):719-728.
YAN S J,DAI S L,ZHANG X Y,et al. Investigating aluminum alloy reinforced by graphene nano-flakes[J].Materials Science & Engineering A,2014(612):440-444.
SLIPENYUK A, KUPRIN V, MILMAN Y, et al. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio[J]. Acta Materialia, 2006, 54(1):157-166.
YOU J, LIU Y Z, GU C X, et al. Microstructure and mechanical properties of SiCp/2024 aluminum matrix composites by hot extrusion of powder [J]. Science and Engineering of Powder Metallurgical Materials, 2014 (1).
DING Z L, REN D L, QI H B, et al. Squeeze casting process of SiC particulate reinforced aluminum matrix composites [J]. Special casting and non-ferrous alloys, 1999 (s1): 64-65.
MA Y, HAO Y, KOU S Z, et al. Preparation and mechanical properties of CuO/Al reactive in-situ composites [J]. Journal of Material Heat Treatment, 2003 (1): 37-40.
YANG B, WANG F, ZHANG J S. Microstructural characterization of in situ TiC/Al and TiC/Al-20Si-5Fe-3Cu-1Mg composites prepared by spray deposition[J]. Acta Materialia, 2003, 51(17):4977-4989.
LI X L, CHEN Y B, YANG B L, et al. Morphology evolution of TiC particulates formed by selfpropagating high-temperature synthesis in Al-Ti-C system[J]. Journal of Hebei University of Science and Technology,2010(06):88-93.
ZHU H G, WANG H ZH, XIONG D SH, et al. Microstructure and mechanical properties of aluminum matrix composite synthesized by XD method [J]. Acta metalica Sinica, 2005 (08): 47-52.
SATISH T, SHARMA V K, MOHANTY R M, et al. Microstructure, adhesion and wear of plasma sprayed Al Si-SiC composite coatings [J]. Journal of Surface Engineered Materials and Advanced Technology, 2012, 2(3): 227-232.
QIANG Y H, WANG X H, FENG P Z. Research progress of SiCp reinforced metal matrix composites [J]. Light metals, 2003 (7): 49-51.
SREEKUMAR V M, HARI B N, ESKIN D G, et al. Structureproperty analysis of in-situ Al-MgAl2O4 metal matrix composites synthesized using ultrasonic cavitation[J]. Materials Science and Engineering: A, 2015, 628:30-40.
CHAWLA N, C HAWLA K K. Metal matrix composites [M]. New York: Springer Science Business Media Inc, 2006:353-355.
TAHA M A, EL M N, EL S A. Some experimental data on workability of aluminum particulate-reinforced metal matrix composites [J]. Journal of Materials Processing Technology, 2008, 202(1/3): 380-384.
RAMACHANDRA M, RADHAKRISHNA K. Effect of reinforcement of flyash on sliding wear, slurry erosive wear and corrosive behavior of aluminum matrix composite [J]. Science Direct, 2007, 262(11/12): 1450-1462.
SEYED S M, REIHANI. Processing of squeeze cast Al6061-30vol% SiC composites and their characterization [J]. Materials and Design, 2006, 27(3): 216-222.
HAN H H, WANG A Q, XIE J P. Research status of SiC and Si particle reinforced aluminum matrix composites [J]. Powder metallurgy industry, 2015, 25 (06): 66-71.
CHENG Z F, ZHANG B, WANG P, et al. Application of SiC/A composite material in airborne photoelectric stabilization platform [J]. Journal of Changchun University of Technology (Natural Science Edition), 2011, 34 (1): 130-133.
NIE J H, FAN J Z, WEI S H, et al. Development and application of aeronautical powder metallurgy particle reinforced aluminum matrix composites [J]. Aviation manufacturing technology, 2017 (16): 26-36.
WANG T, ZHAO Y X, FU S H, et al. Development and key issues of continuous fiber reinforced metal matrix composites [J]. Journal of Aviation Materials, 2013, 33 (02): 87-96.
MENG L. Research status of fiber reinforced aluminum matrix composites [J]. Science and technology information, 2009 (18): 437-438.
ZHONG L, HAN X, ZHOU S Q. Research progress of fiber reinforced aluminum matrix composites [J]. Mechanical engineering materials, 2002 (12): 12-14.
ZHOU T, ZHOU X Y, DA J C, et al. Research progress of carbon fiber reinforced metal matrix composites [J]. Hot processing technology, 2016, 45 (18): 31-32+37.
XUE Y, SONG M, XIAO D H. Preparation and mechanical properties of particulate reinforced aluminum matrix composites [J]. Natural Journal, 2015, 37 (01): 41-48.
FAN J Z, SHI L K. Research and application development of particulate reinforced aluminum matrix composites [J]. Aerospace materials technology, 2012, 42 (01): 1-7.
HUANG G Q,WU J,HOU W T, et al. Microstructure, mechanical properties and strengthening mechanism of titanium particle reinforced aluminum matrix composites produced by submerged friction stir processing [J]. Materials Science & Engineering A, 2018:353–363.
PAN L W, LIN W D, TANG J F, et al. Preparation methods and research status of particulate reinforced aluminum matrix composites [J]. Material report, 2016, 30 (S1): 511-515.
DOI: https://doi.org/10.33142/msra.v2i1.1975
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Wanwu DING, Yan CHENG, Taili CHEN, Xiaoyan ZHAO, Xiaoxiong LIU
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.