Research and Application of Materials Science

Oxidation resistance of magnesium alloyed by different elements: a brief review

LIUZhihui, XIAOZhuosong, SUNQi, LIUGuojun, LippmannS, ZHUYongfu


The application of magnesium (Mg) and its alloys in automotive and aerospace industry is promoted gradually because of its outstanding properties, such as light weight, high specific strength and excellent castability. However, as a chemically active metal, Mg and its alloys generally possess low oxidation resistance in air at high temperatures because of the high affinity of Mg for O. This has caused a lot of industrial waste and a short service life. In the present work, according to the relevant mechanism of Mg alloy oxidation in air at high temperature, the effect of alloying elements on the oxidation of pure Mg and Mg alloys as well as the research progress of oxidation resistant Mg alloys are briefly reviewed.


Magnesium; Magnesium alloy; High temperature; Oxidation; Alloying elements

Full Text:



CD. Barrett, A. Imandoust, AL. Oppedal. Effect of grain boundaries on texture formation during dynamic recrystallization of magnesium alloys, Acta Mater. 2017 (128): 270–283.

J. Buha. Mechanical properties of naturally aged Mg–Zn– Cu–Mn alloy, Mater. Sci. Eng. A 2008 (489): 127–137.

J. J. Jeon, S. W. Lee, B. H. Kim. Effect of Sb and Sr addition on corrosion properties of Mg–5Al–2Si alloy, Korean J. Met. Mater. 2008 (46): 304–309.

S. Tekumalla, M. Gupta. An insight into ignition factors and mechanisms of magnesium based materials: a review, Mater. Design. 2017 (113): 84–98.

M. Gobara, M. Shamekh, R. Akid. Improving the corrosion resistance of AZ91Dmagnesium alloy through reinforcement with titanium carbides and borides, J. Magn. Alloys 2015 (3): 112–120.

A. Atrens, G. L. Song, M. Liu. Review of recent developments in the field of magnesium corrosion, Adv. Eng. Mater. 2015 (17): 400–453.

G.L. Makar, J. Kruger. Corrosion of magnesium, Int. Mater. Rev. 1993 (38): 138–153.

Q. Y. Tan, A. AtrensTan, N. Mo. Oxidation of magnesium alloys at elevated temperatures in air: A revie, Corros. Sci. 2016 (112): 734–759.

F. Czerwinski. The reactive element effect on high-temperature oxidation of magnesium, Int. Mater. Rev. 2015 (60): 264–296.

P. Kofstad. High temperature corrosion, Elsevier Applied Science Publisher Ltd., 1988

F. Czerwinski. Z. Kedzierski. On the mechanism of Research and Application of Materials Science  Vol. 3  No.1  2021 25 microcrack formation in nanocrystalline Fe-Ni electrodeposits, J. Mater. Sci. 1997 (32): 2957-2961.

I.J. Polmear, Light Alloys, third ed., Arnold, London, 1995.

A. Luo, M.O. Pekguleryuz. Cast magnesium alloys for elevated temperature applications, J. Mater. Sci. 1994 (29): 5259–5271.

J. Jedlinski, G. Borchardt. On the oxidation mechanism of alumina formers, Oxid. Met. 1991 (36): 317–337.

J. Medved, P. Mrvar, M. Vonˇcina. Oxidation resistance of cast magnesium alloys, Oxid. Met. 2009 (71): 257–270.

F. Czerwinski. The oxidation behaviour of an AZ91D magnesium alloy at high temperatures, Acta Mater. 2002 (50): 2639–2654.

M. Barrena, J. Gomez de Salazar, L. Matesanz, A. Soria. Effect of heat treatment on oxidation kinetics in AZ91 and AM60 magnesium alloys, Mater. Charact. 2011 (62): 982– 986.

T. Leontis , F. Rhines. Rates of high temperature oxidation of magnesium and magnesium alloys, Trans. Amer. Inst. Min. (matall.) Engrs. 1946 (166): 265–294.

Huang H, Yuan G Y, Chu Z H, et al., Microstructure and mechanical properties of double continuously extruded Mg-Zn-Gd-based magnesium alloys, Mater. Sci. Eng.: A 2013 (560): 241–248.

Yu X, Jiang B, He J,et al., Effect of Zn addition on the oxidation property of Mg-Y alloy at high temperatures, J. Alloy. Compd. 2016 (687): 252–262.

You B S, Park W.W, Chung I S. The effect of calcium additions on the oxidation behavior in magnesium alloys, Scr. Mater. 2000 (42): 1089–1094.

Cheng s, Yang G, Fan J, et al., Effect of Ca and Y additions on oxidation behavior of AZ91 alloy at elevated, T. Nonferr. Metal. Soc. 2009 (19): 299–304.

D.S. Aydin, Z. Bayindir, M.O. Pekguleryuz. High temperature oxidation behavior of hypoeutectic Mg-Sr binary alloys: the role of the two-Phase microstructure and the surface activity of Sr, Adv. Eng. Mater. 2015 (17): 697–708.

D.S. Aydin, Z. Bayindir, M.O. Pekguleryuz. The effect of strontium (Sr) on the ignition temperature of magnesium (Mg): a look at the pre-ignition stage of Mg–6 wt% Sr, J. Mater. Sci. 2013 (48): 8117–8132.

M. Pekguleryuz, P. Vermette. Strontium for melt oxidation reduction ofmagnesium and a method for adding strontium to magnesium, US Patent Application, US20040159188 A1, 2004.

H.S. Kim, Y.M. Kim, C.D. Yim, et al., Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures, Scripta Mater. 2011 (65): 958–961.

Zhao S, Zhou H, Zhou T, et al., The oxidation resistance and ignition temperature of AZ31 magnesium alloy with additions of La2O3 and La, Corros. Sci. 2013 (67): 75–81.

Wang X.M, Zeng X Q ,Wu G S, et al., The effects of cerium implantation on the oxidation behavior of AZ31 magnesium alloys, J. Alloys Compd. 2008 (456): 384–389.

Lin P, Zhou H, Li W, et al., Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy, Corros. Sci. 2008 (50): 2669–2675.

Li W P, Li W, Zhou H, et al., Effect of cooling rate on ignition point of AZ91D-0.98 wt.% Ce magnesium alloy, Mater. Lett. 2007 (61): 2772–2774.

Wang X.M, Zeng X Q ,Wu G S, et al., Surface oxidation behavior of MgNd alloys, Appl. Surf. Sci. 2007 (253): 9017– 9023.

D.S. Aydin, Z. Bayindir, M. Hoseini, et al., The high temperature oxidation and ignition behavior of Mg–Nd alloys part I: the oxidation of dilute alloys, J. Alloys Compd. 2013 (569): 35–44.

D.S. Aydin, Z. Bayindir, M.O. Pekguleryuz. The high temperature oxidationbehavior of Mg–Nd alloys. Part II: the effect of the two-phase microstructureon the on-set of oxidation and on oxide morphology, J. Alloys Compd. 2014(584): 558–565.

N.B. Pilling, R.E. Bedworth. The oxidation of metals at high temperatures, J. Inst. Met. 1923 (29): 529–591.

G.L. Makar, J. Kruger. Corrosion of magnesium, Int. Mater. Rev. 1993 (38): 138–153.

R. Arrabal, A. Pardo, M.C. Merino, et al., Oxidation behavior of AZ91D magnesium alloy containing Nd or Gd, Oxid. Met. 2011 (76): 433–450.

D.S. Aydin, M. Hoseini, M.O. Pekguleryuz. Understanding the hightemperature oxidation and ignition behaviour of two-phase Mg-Nd alloysand a comparison to single phase Mg-Nd, Philos. Mag. 2015 (95): 259–274.

Liu J, Li Y, Wang F. The high temperature oxidation behavior of Mg–Gd–Y–Zr alloy, Oxid. Met. 2009 (71): 319–334.

Wang X, Wu W, Tang Y, et al., Early high temperature oxidation behaviors of Mg–10Gd–3Y alloys, J. Alloys Compd. 2009 (474): 499–504.

Yu X W, Jiang B ,He J J, et,al., Oxidation resistance of Mg-Y alloys at elevated temperatures and the protection performance of the oxide films, J. Alloy Compd. 2018 (749): 1054–1062.

Fan J F, Cheng S.L, Xie H, et al., Surface oxidation behavior of Mg-Y-Ce alloys at high temperature, Metall. Mater. Trans. A 2005 (36): 235-239.

Fan J F, Yang G C, Chen S L,et al, Effect of rare earths (Y, Ce) additions on the ignition points of magnesium alloys, J. Mater. Sci. 2004 (39): 6375-6377.

Yu X, Shen S, Jiang B, et al., The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys, Appl. Surf. Sci. 2016 (370): 357–363.

Wu J J, Yuan Y, Yang L, et al., The oxidation behavior of Mg-Er binary alloys at 500℃, Corros. Sci. 2022 (195): 109961.



  • There are currently no refbacks.

Copyright (c) 2022 Zhihui LIU, Zhuosong XIAO, Qi SUN, Guojun LIU, S Lippmann, Yongfu ZHU

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.