Recent Progress of Catalytic Cathodes for Lithium-oxygen Batteries
Abstract
Keywords
Full Text:
PDFReferences
Wu, F Yu, Y., Toward True Lithium-Air Batteries, Joule2018(2): 815-817.
Li, J Ding, S Zhang, S et al., Catalytic redox mediators fornon-aqueous Li-O2 battery, Energy Storage Mater. 2021(43):97-119.
Ma, Z.; Yuan, X.; Li, L., et al., A review of cathode materialsand structures for rechargeable lithium– air batteries,Energy Environ. Sci. 2015(8): 2144-2198.
Shen, S.; Wu, A.; Xia, G., et al., Facile preparation of uniquethree-dimensional (3D) α-MnO2/MWCNTs macroporoushybrid as the high-performance cathode of rechargeableLi-O2 batteries, Nano Res. 2019(12): 69-75.
Jung, J.-W.; Cho, S.-H.; Nam, J. S., et al., Current and futurecathode materials for non-aqueous Li-air (O2) batterytechnology – A focused review, Energy Storage Mater.2020(24): 512-528.
Zhang, X.; Mu, X.; Yang, S., et al., Research Progress for theDevelopment of Li-Air Batteries: Addressing ParasiticReactions Arising from Air Composition, Energy &Environmental Materials. 2018(1): 61-74.
Sun, T.; Li, Z. J.; Zhi, Y. F., et al., Poly(2,5‐Dihydroxy‐1,4‐Benzoquinonyl Sulfide) As an Efficient Cathode for High‐Performance Aqueous Zinc–Organic Batteries, Adv. Funct.Mater. 2021(31): 1.
Wang, X.-T.; Yang, Y.; Guo, J.-Z., et al., An advanced cathodecomposite for co-utilization of cations and anions in lithiumbatteries, Journal of Materials Science & Technology2022(102): 72-79.
Liu, K.; Liu, Y. Y.; Lin, D. C., et al., Materials for lithium-ionbattery safety, Sci. Adv. 2018(4): eaas9820.
Gu, Z.-Y.; Guo, J.-Z.; Sun, Z.-H., et al.,Air/water/temperature-stable cathode for all-climatesodium-ion batteries, Cell Reports Physical Science. 2021(2):2-3.
Wu, K.; Ning, F.; Yi, J., et al., Host-guest supramolecularinteraction behavior at the interface between anode andelectrolyte for long life Zn anode, J. Energy Chem. 2022(69):237-243.
Cui, J.; Liu, X.; Xie, Y., et al., Improved electrochemicalreversibility of Zn plating/stripping: a promising approach tosuppress water-induced issues through the formation ofH-bonding, Materials Today Energy. 2020(18): 5.
Wu, K.; Yi, J.; Liu, X., et al., Regulating Zn Deposition via anArtificial Solid-Electrolyte Interface with Aligned Dipoles forLong Life Zn Anode, Nanomicro Lett. 2021(13): 79.
Liu, X.; Fang, Y.; Liang, P., et al., Surface-tunedtwo-dimension MXene scaffold for highly reversible zincmetal anode, Chin. Chem. Lett. 2021(32): 2899-2903.
Li, Q.; Han, L.; Luo, Q., et al., Towards Understanding theCorrosion Behavior of Zinc ‐Metal Anode in AqueousSystems: From Fundamentals to Strategies, Batteries &Supercaps. 2022(5): 3-5.
Chen, K.; Yang, D. Y.; Huang, G., et al., Lithium-Air Batteries:Air-Electrochemistry and Anode Stabilization, Acc Chem Res.2021(54): 632-641.
Zhan, Y.; Luo, S.-h.; Feng, J., et al., Improvedelectrocatalytic activity of hexagonal prisms Fe3O4 derivedfrom metal-organic framework by coveringdendritic-shaped carbon layer in Li–O2 battery, CompositesPart B: Engineering. 2021(226): 128-134.
Chen, K.; Huang, G.; Ma, J. L., et al., The Stabilization Effectof CO2 in Lithium-Oxygen/CO2 Batteries, Angew. Chem. Int.Ed. Engl. 2020(59): 16661-16667.
Liu, Z.; Zhao, Z.; Zhang, W., et al., Toward high ‐performance lithium‐oxygen batteries with cobalt‐basedtransition metal oxide catalysts: Advanced strategies andmechanical insights, InfoMat. 2021(4): 2.
Guo, X.; Xiao, L.; Yan, P., et al., Synergistic tuning ofelectrochemical surface area and surface Co3+ by oxygenplasma enhances the capacities of Co3O4 lithium–oxygenbattery cathodes, Chin. Chem. Lett. 2021(32): 3491-3495.
Hou, C.; Han, J.; Liu, P., et al., Synergetic Effect of Liquid andSolid Catalysts on the Energy Efficiency of Li-O2 Batteries:Cell Performances and Operando STEM Observations, NanoLett. 2020(20): 2183-2190.
Liu, Y.; He, P.; Zhou, H., Rechargeable Solid-State Li-Air andLi-S Batteries: Materials, Construction, and Challenges, Adv. Energy Mater. 2018(8): 6-8.
Liu, L.; Liu, Y.; Wang, C., et al., Li2 O2 FormationElectrochemistry and Its Influence on OxygenReduction/Evolution Reaction Kinetics in Aprotic Li-O2Batteries, Small Methods. 2022(6): e2101280.
Liu, B.; Sun, Y.; Liu, L., et al., Advances in Manganese-BasedOxides Cathodic Electrocatalysts for Li-Air Batteries, Adv.Funct. Mater. 2018(28): 56-58.
Hegde, G. S.; Ghosh, A.; Badam, R., et al., Role of Defects inLow-Cost Perovskite Catalysts toward ORR and OER inLithium–Oxygen Batteries, ACS Applied Energy Materials.2020(3): 1338-1348.
Zhao, Y.; Chen, W.; Wu, J., et al., Recent advances in chargemechanism of noble metal-based cathodes for Li-O2batteries, Chin. Chem. Lett. 2022.
Chen, Y.; Gao, X.; Johnson, L. R., et al., Kinetics of lithiumperoxide oxidation by redox mediators and consequencesfor the lithium-oxygen cell, Nat. Commun. 2018(9): 767.
Sun, G.; Zhao, Q.; Wu, T., et al., 3D Foam-Like Compositesof Mo2C Nanorods Coated by N-Doped Carbon: A NovelSelf-Standing and Binder-Free O2 Electrode for Li-O2Batteries, ACS Appl Mater Interfaces. 2018(10): 6327-6335.
Ju, B.; Song, H. J.; Lee, G.-H., et al., Nickel disulfidenanosheet as promising cathode electrocatalyst for long-lifelithium–oxygen batteries, Energy Storage Mater. 2020(24):594-601.
Lim, H. D.; Lee, B.; Bae, Y., et al., Reaction chemistry inrechargeable Li-O2 batteries, Chem. Soc. Rev. 2017(46):2873-2888.
Shu, C.; Wang, J.; Long, J., et al., Understanding theReaction Chemistry during Charging in AproticLithium-Oxygen Batteries: Existing Problems and Solutions,Adv Mater. 2019(31): e1804587.
Li, F.; Chen, J., Mechanistic Evolution of AproticLithium-Oxygen Batteries, Adv. Energy Mater. 2017(7):4-7.
Song, L. N.; Zhang, W.; Wang, Y., et al., Tuninglithium-peroxide formation and decomposition routes withsingle-atom catalysts for lithium-oxygen batteries, Nat.Commun. 2020(11): 2191.
Hou, Y.; Wang, J.; Hou, C., et al., Oxygen vacanciespromoting the electrocatalytic performance of CeO2nanorods as cathode materials for Li–O2 batteries, J. Mater.Chem. 2019(7): 6552-6561.
Liang, R.; Shu, C.; Hu, A., et al., Interface engineeringinduced selenide lattice distortion boosting catalytic activityof heterogeneous CoSe2@NiSe2 for lithium-oxygen battery,Chem. Eng. J. 2020(393):1.
Hou, Y.; Wang, J.; Liu, J., et al., Interfacial Super-AssembledPorous CeO2/C Frameworks Featuring Efficient and SensitiveDecomposing Li2O2 for Smart Li-O-2 Batteries, Adv. EnergyMater. 2019(9):5.
Jung, I.-S.; Kwon, H. J.; Kim, M., et al., Rapid oxygendiffusive lithium – oxygen batteries using arestacking-inhibited, free-standing graphene cathode film, J.Mater. Chem. 2029(7): 10397-10404.
Li, M.; Xiao, L.; Wang, D., et al., Surface carboxyl groupsenhance the capacities of carbonaceous oxygen electrodesfor aprotic lithium−oxygen batteries: A direct observationon binder-free electrodes, Chin. Chem. Lett. 2019(30):2328-2332.
Xu, J.; Xu, F.; Qian, M., et al., Conductive Carbon Nitride forExcellent Energy Storage, Adv Mater. 2017(29): 87-99.
Yao, L.; Lin, J.; Li, S., et al., Metal-organicframeworks-derived hollow dodecahedral carbon combinedwith FeNx moieties and ruthenium nanoparticles ascathode electrocatalyst for lithium oxygen batteries, J.Colloid Interface Sci. 2021(596): 1-11.
Du, D.; Zheng, R.; He, M., et al., A-site cationic defectsinduced electronic structure regulation of LaMnO3perovskite boosts oxygen electrode reactions in aproticlithium–oxygen batteries, Energy Storage Mater. 2021(43):293-304.
Shen, J.; Wu, H.; Sun, W., et al., In-situ nitrogen-dopedhierarchical porous hollow carbon spheres anchored withiridium nanoparticles as efficient cathode catalysts forreversible lithium-oxygen batteries, Chem. Eng. J. 2019(358):340-350.
Zhang, Y.; Ma, J.; Yuan, M. W., et al., The design of hollowPdO-Co3O4 nano-dodecahedrons with moderate catalyticactivity for Li-O2 batteries, Chem. Commun. (Camb.).2019(55): 12683-12686.
Zheng, M.; Jiang, J.; Lin, Z., et al., Stable Voltage CutoffCycle Cathode with Tunable and Ordered Porous Structurefor Li-O2 Batteries, 2018(14): e1803607.
Zhao, Z.; Liu, Y.; Wan, F., et al., Free-standing nitrogendoped graphene/Co(OH)2 composite films with superiorcatalytic activity for aprotic lithium-oxygen batteries, Chin.Chem. Lett. 2021(32): 594-597.
Wang, F.; Qiao, J.; Wang, J., et al., Multimetallic Core–Bishell Ni@Au@Pd nanoparticles with reduced grapheneoxide as an efficient bifunctional electrocatalyst for oxygenreduction/evolution reactions, J. Alloys Compd. 2019(811):3.
Wen, C.; Zhu, T.; Li, X., et al., Nanostructured Ni/Ti3C2TMXene hybrid as cathode for lithium-oxygen battery, Chin.Chem. Lett. 2020(31): 1000-1003.
Liu, X.; Huang, Q.; Wang, J., et al., In-situ deposition ofPd/Pd4S heterostructure on hollow carbon spheres asefficient electrocatalysts for rechargeable Li-O2 batteries,Chin. Chem. Lett. 2021(32): 2086-2090.
Ding, N.; Chien, S. W.; Hor, T. S. A., et al., Influence ofcarbon pore size on the discharge capacity of Li –O2batteries, J. Mater. Chem. 2014(A 2): 12433-12441.
Shui, J.; Du, F.; Xue, C., et al., Vertically Aligned N-DopedCoral-like Carbon Fiber Arrays as Efficient Air Electrodes forHigh-Performance Nonaqueous Li-O-2 Batteries, ACS Nano2014(8): 3015-3022.
Zhang, J.; Chen, X.; Lei, Y., et al., Highly rechargeablelithium oxygen batteries cathode based on boron andnitrogen co-doped holey graphene, Chem. Eng. J.2022(428):7.
Yi, L. C.; Ci, S. Q.; Sun, C. L., et al., Cathode Materials ofNon-Aqueous Lithium-Oxygen Battery, Progress inChemistry. 2016(28): 1251-1264.
Bui, H. T.; Kim, D. Y.; Kim, D. W., et al., Carbonnanofiber@platinum by a coaxial electrospinning and their improved electrochemical performance as a Li−O2 batterycathode, Carbon. 2018(130): 94-104.
Jeong, Y. S.; Park, J.-B.; Jung, H.-G., et al., Study on theCatalytic Activity of Noble Metal Nanoparticles on ReducedGraphene Oxide for Oxygen Evolution Reactions inLithium-Air Batteries, Nano Lett. 2015(15): 4261-4268.
Lu, Y.-C.; Xu, Z.; Gasteiger, H. A., et al., Platinum-GoldNanoparticles: A Highly Active Bifunctional Electrocatalystfor Rechargeable Lithium-Air Batteries, J. Am. Chem. Soc.2010(132): 12170-12171.
Choi, R.; Jung, J.; Kim, G., et al., Ultra-low overpotentialand high rate capability in Li–O2 batteries through surfaceatom arrangement of PdCu nanocatalysts, Energy Environ.Sci. 2014(7): 1362-1368.
Jung, H.-G.; Jeong, Y. S.; Park, J.-B., et al., Ruthenium-BasedElectrocatalysts Supported on Reduced Graphene Oxide forLithium-Air Batteries, ACS Nano. 2013(7): 3532-3539.
Wang, P.; Ren, Y.; Wang, R., et al., Atomically dispersedcobalt catalyst anchored on nitrogen-doped carbonnanosheets for lithium-oxygen batteries, Nat. Commun.11(2020): 1576.
Gao, R.; Li, Z.; Zhang, X., et al., Carbon-Dotted DefectiveCoO with Oxygen Vacancies: A Synergetic Design ofBifunctional Cathode Catalyst for Li–O2 Batteries, ACSCatalysis 6(2015): 400-406.
Lin, Y.; Yang, Q.; Geng, F., et al., Suppressing Singlet OxygenFormation during the Charge Process of Li-O2 Batteries witha Co3O4 Solid Catalyst Revealed by Operando ElectronParamagnetic Resonance, J. Phys. Chem. Lett. 2021(12):10346-10352.
Zhang, P.; Sun, D.; He, M., et al., Synthesis of Porousdelta-MnO2 Submicron Tubes as Highly EfficientElectrocatalyst for Rechargeable Li-O2 Batteries,ChemSusChem. 2015(8): 1972-1979.
Minowa, H.; Hayashi, M.; Hayashi, K., et al., Mn–Fe-basedoxide electrocatalysts for air electrodes of lithium–airbatteries, J. Power Sources. 2013(244): 17-22.
Li, P.; Zhang, J.; Yu, Q., et al., One-dimensional porousLa0.5Sr0.5CoO2.91 nanotubes as a highly efficientelectrocatalyst for rechargeable lithium-oxygen batteries,Electrochim. Acta. 2015(165): 78-84.
Ma, Z.; Yuan, X.; Li, L., et al., The double perovskite oxideSr2CrMoO(6-delta) as an efficient electrocatalyst forrechargeable lithium air batteries, Chem. Commun. (Camb.)2014(50): 14855-14858.
Zhu, X.; Pan, X.; Wu, Y., et al., Layered perovskite oxidePrBaCo2O5+δ as a potential cathode for lithium–oxygenbatteries: High-performance bi-functional electrocatalysts,Mater. Lett. 2019(237): 200-203.
Sun, B.; Chen, S.; Liu, H., et al., Mesoporous CarbonNanocube Architecture for High-PerformanceLithium-Oxygen Batteries, Adv. Funct. Mater. 2015(25):4436-4444.
Guo, X.; Liu, P.; Han, J., et al., 3D NanoporousNitrogen-Doped Graphene with Encapsulated RuO2Nanoparticles for Li-O2 Batteries, Adv Mater. 2015(27):6137-6143.
Lian, Z.; Lu, Y.; Ma, S., et al., Metal atom-doped Co3O4nanosheets for Li-O2 battery catalyst: Study on thedifference of catalytic activity, Chem. Eng. J.2022(445):98-109.
Li, J.; Zhou, H.; Jian, Z., et al., Improved ElectrocatalyticActivity of Three-Dimensional Open-StructuredCo3O4@MnO2 Bifunctional Catalysts of Li-O2 Batteries byInducing the Oriented Growth of Li2O2, ACS SustainableChemistry & Engineering. 2021(9): 5334-5344.
Lin, H.; Liu, Z.; Mao, Y., et al., Effect of nitrogen-dopedcarbon/Ketjenblack composite on the morphology of Li2O2for high-energy-density Li–air batteries, Carbon. 2016(96):965-971.
Cui, R.; Xiao, Y.; Li, C., et al., Polyaniline/reduced grapheneoxide foams as metal-free cathodes for stablelithium-oxygen batteries, Nanotechnology. 2020(31):445402.
Li, F.; Ohnishi, R.; Yamada, Y., et al., Carbon supported TiNnanoparticles: an efficient bifunctional catalyst fornon-aqueous Li-O2 batteries, Chem. Commun. (Camb.)2013(49): 1175-1177.
Cao, X.; Chen, Z.; Wang, N., et al., Defected molybdenumdisulfide catalyst engineered by nitrogen doping foradvanced lithium – oxygen battery, Electrochim. Acta2021(383): 2.
Sun, K.; Liu, M.; Yu, S., et al., In-situ grown vanadiumnitride coated with thin layer of nitrogen-doped carbon as ahighly durable binder-free cathode for Li–O2 batteries, J.Power Sources. 2020(460):6.
DOI: https://doi.org/10.33142/rams.v4i1.8461
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Wei WANG, Simin WANG, Longhai ZHANG, Sijiang HU, Xuyang XIONG, Tengfei ZHOU, Chaofeng ZHANG
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.