Research and Application of Materials Science

Recent Progress of Catalytic Cathodes for Lithium-oxygen Batteries

WANGWei, WANGSimin, ZHANGLonghai, HUSijiang, XIONGXuyang, ZHOUTengfei, ZHANGChaofeng

Abstract


Lithium-oxygen batteries are among the most promising electrochemical energy storage systems, which have attracted significant attention in the past few years duo to its far more energy density than lithium-ion batteries. Lithium oxygen battery energy storage is a reactive storage mechanism, and the discharge and charge processes are usually called oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Consequently, complex systems usually create complex problems, lithium oxygen batteries also face many problems, such as excessive accumulation of discharge products (Li2O2) in the cathode pores, resulting in reduced capacity, unstable cycling performance and so on. Cathode catalyst, which could influence the kinetics of OER and ORR in lithium oxygen (Li-O2) battery, is one of the decisive factors to determine the electrochemical performance of the battery, so the design of cathode catalyst is vitally important. This review discusses the catalytic cathode materials, which are divided into four parts, carbon based materials, metals and metal oxides, composite materials and other materials.

Keywords


oxygen battery; cathode; catalyst; energy storage

Full Text:

PDF

References


Wu, F Yu, Y., Toward True Lithium-Air Batteries, Joule2018(2): 815-817.

Li, J Ding, S Zhang, S et al., Catalytic redox mediators fornon-aqueous Li-O2 battery, Energy Storage Mater. 2021(43):97-119.

Ma, Z.; Yuan, X.; Li, L., et al., A review of cathode materialsand structures for rechargeable lithium– air batteries,Energy Environ. Sci. 2015(8): 2144-2198.

Shen, S.; Wu, A.; Xia, G., et al., Facile preparation of uniquethree-dimensional (3D) α-MnO2/MWCNTs macroporoushybrid as the high-performance cathode of rechargeableLi-O2 batteries, Nano Res. 2019(12): 69-75.

Jung, J.-W.; Cho, S.-H.; Nam, J. S., et al., Current and futurecathode materials for non-aqueous Li-air (O2) batterytechnology – A focused review, Energy Storage Mater.2020(24): 512-528.

Zhang, X.; Mu, X.; Yang, S., et al., Research Progress for theDevelopment of Li-Air Batteries: Addressing ParasiticReactions Arising from Air Composition, Energy &Environmental Materials. 2018(1): 61-74.

Sun, T.; Li, Z. J.; Zhi, Y. F., et al., Poly(2,5‐Dihydroxy‐1,4‐Benzoquinonyl Sulfide) As an Efficient Cathode for High‐Performance Aqueous Zinc–Organic Batteries, Adv. Funct.Mater. 2021(31): 1.

Wang, X.-T.; Yang, Y.; Guo, J.-Z., et al., An advanced cathodecomposite for co-utilization of cations and anions in lithiumbatteries, Journal of Materials Science & Technology2022(102): 72-79.

Liu, K.; Liu, Y. Y.; Lin, D. C., et al., Materials for lithium-ionbattery safety, Sci. Adv. 2018(4): eaas9820.

Gu, Z.-Y.; Guo, J.-Z.; Sun, Z.-H., et al.,Air/water/temperature-stable cathode for all-climatesodium-ion batteries, Cell Reports Physical Science. 2021(2):2-3.

Wu, K.; Ning, F.; Yi, J., et al., Host-guest supramolecularinteraction behavior at the interface between anode andelectrolyte for long life Zn anode, J. Energy Chem. 2022(69):237-243.

Cui, J.; Liu, X.; Xie, Y., et al., Improved electrochemicalreversibility of Zn plating/stripping: a promising approach tosuppress water-induced issues through the formation ofH-bonding, Materials Today Energy. 2020(18): 5.

Wu, K.; Yi, J.; Liu, X., et al., Regulating Zn Deposition via anArtificial Solid-Electrolyte Interface with Aligned Dipoles forLong Life Zn Anode, Nanomicro Lett. 2021(13): 79.

Liu, X.; Fang, Y.; Liang, P., et al., Surface-tunedtwo-dimension MXene scaffold for highly reversible zincmetal anode, Chin. Chem. Lett. 2021(32): 2899-2903.

Li, Q.; Han, L.; Luo, Q., et al., Towards Understanding theCorrosion Behavior of Zinc ‐Metal Anode in AqueousSystems: From Fundamentals to Strategies, Batteries &Supercaps. 2022(5): 3-5.

Chen, K.; Yang, D. Y.; Huang, G., et al., Lithium-Air Batteries:Air-Electrochemistry and Anode Stabilization, Acc Chem Res.2021(54): 632-641.

Zhan, Y.; Luo, S.-h.; Feng, J., et al., Improvedelectrocatalytic activity of hexagonal prisms Fe3O4 derivedfrom metal-organic framework by coveringdendritic-shaped carbon layer in Li–O2 battery, CompositesPart B: Engineering. 2021(226): 128-134.

Chen, K.; Huang, G.; Ma, J. L., et al., The Stabilization Effectof CO2 in Lithium-Oxygen/CO2 Batteries, Angew. Chem. Int.Ed. Engl. 2020(59): 16661-16667.

Liu, Z.; Zhao, Z.; Zhang, W., et al., Toward high ‐performance lithium‐oxygen batteries with cobalt‐basedtransition metal oxide catalysts: Advanced strategies andmechanical insights, InfoMat. 2021(4): 2.

Guo, X.; Xiao, L.; Yan, P., et al., Synergistic tuning ofelectrochemical surface area and surface Co3+ by oxygenplasma enhances the capacities of Co3O4 lithium–oxygenbattery cathodes, Chin. Chem. Lett. 2021(32): 3491-3495.

Hou, C.; Han, J.; Liu, P., et al., Synergetic Effect of Liquid andSolid Catalysts on the Energy Efficiency of Li-O2 Batteries:Cell Performances and Operando STEM Observations, NanoLett. 2020(20): 2183-2190.

Liu, Y.; He, P.; Zhou, H., Rechargeable Solid-State Li-Air andLi-S Batteries: Materials, Construction, and Challenges, Adv. Energy Mater. 2018(8): 6-8.

Liu, L.; Liu, Y.; Wang, C., et al., Li2 O2 FormationElectrochemistry and Its Influence on OxygenReduction/Evolution Reaction Kinetics in Aprotic Li-O2Batteries, Small Methods. 2022(6): e2101280.

Liu, B.; Sun, Y.; Liu, L., et al., Advances in Manganese-BasedOxides Cathodic Electrocatalysts for Li-Air Batteries, Adv.Funct. Mater. 2018(28): 56-58.

Hegde, G. S.; Ghosh, A.; Badam, R., et al., Role of Defects inLow-Cost Perovskite Catalysts toward ORR and OER inLithium–Oxygen Batteries, ACS Applied Energy Materials.2020(3): 1338-1348.

Zhao, Y.; Chen, W.; Wu, J., et al., Recent advances in chargemechanism of noble metal-based cathodes for Li-O2batteries, Chin. Chem. Lett. 2022.

Chen, Y.; Gao, X.; Johnson, L. R., et al., Kinetics of lithiumperoxide oxidation by redox mediators and consequencesfor the lithium-oxygen cell, Nat. Commun. 2018(9): 767.

Sun, G.; Zhao, Q.; Wu, T., et al., 3D Foam-Like Compositesof Mo2C Nanorods Coated by N-Doped Carbon: A NovelSelf-Standing and Binder-Free O2 Electrode for Li-O2Batteries, ACS Appl Mater Interfaces. 2018(10): 6327-6335.

Ju, B.; Song, H. J.; Lee, G.-H., et al., Nickel disulfidenanosheet as promising cathode electrocatalyst for long-lifelithium–oxygen batteries, Energy Storage Mater. 2020(24):594-601.

Lim, H. D.; Lee, B.; Bae, Y., et al., Reaction chemistry inrechargeable Li-O2 batteries, Chem. Soc. Rev. 2017(46):2873-2888.

Shu, C.; Wang, J.; Long, J., et al., Understanding theReaction Chemistry during Charging in AproticLithium-Oxygen Batteries: Existing Problems and Solutions,Adv Mater. 2019(31): e1804587.

Li, F.; Chen, J., Mechanistic Evolution of AproticLithium-Oxygen Batteries, Adv. Energy Mater. 2017(7):4-7.

Song, L. N.; Zhang, W.; Wang, Y., et al., Tuninglithium-peroxide formation and decomposition routes withsingle-atom catalysts for lithium-oxygen batteries, Nat.Commun. 2020(11): 2191.

Hou, Y.; Wang, J.; Hou, C., et al., Oxygen vacanciespromoting the electrocatalytic performance of CeO2nanorods as cathode materials for Li–O2 batteries, J. Mater.Chem. 2019(7): 6552-6561.

Liang, R.; Shu, C.; Hu, A., et al., Interface engineeringinduced selenide lattice distortion boosting catalytic activityof heterogeneous CoSe2@NiSe2 for lithium-oxygen battery,Chem. Eng. J. 2020(393):1.

Hou, Y.; Wang, J.; Liu, J., et al., Interfacial Super-AssembledPorous CeO2/C Frameworks Featuring Efficient and SensitiveDecomposing Li2O2 for Smart Li-O-2 Batteries, Adv. EnergyMater. 2019(9):5.

Jung, I.-S.; Kwon, H. J.; Kim, M., et al., Rapid oxygendiffusive lithium – oxygen batteries using arestacking-inhibited, free-standing graphene cathode film, J.Mater. Chem. 2029(7): 10397-10404.

Li, M.; Xiao, L.; Wang, D., et al., Surface carboxyl groupsenhance the capacities of carbonaceous oxygen electrodesfor aprotic lithium−oxygen batteries: A direct observationon binder-free electrodes, Chin. Chem. Lett. 2019(30):2328-2332.

Xu, J.; Xu, F.; Qian, M., et al., Conductive Carbon Nitride forExcellent Energy Storage, Adv Mater. 2017(29): 87-99.

Yao, L.; Lin, J.; Li, S., et al., Metal-organicframeworks-derived hollow dodecahedral carbon combinedwith FeNx moieties and ruthenium nanoparticles ascathode electrocatalyst for lithium oxygen batteries, J.Colloid Interface Sci. 2021(596): 1-11.

Du, D.; Zheng, R.; He, M., et al., A-site cationic defectsinduced electronic structure regulation of LaMnO3perovskite boosts oxygen electrode reactions in aproticlithium–oxygen batteries, Energy Storage Mater. 2021(43):293-304.

Shen, J.; Wu, H.; Sun, W., et al., In-situ nitrogen-dopedhierarchical porous hollow carbon spheres anchored withiridium nanoparticles as efficient cathode catalysts forreversible lithium-oxygen batteries, Chem. Eng. J. 2019(358):340-350.

Zhang, Y.; Ma, J.; Yuan, M. W., et al., The design of hollowPdO-Co3O4 nano-dodecahedrons with moderate catalyticactivity for Li-O2 batteries, Chem. Commun. (Camb.).2019(55): 12683-12686.

Zheng, M.; Jiang, J.; Lin, Z., et al., Stable Voltage CutoffCycle Cathode with Tunable and Ordered Porous Structurefor Li-O2 Batteries, 2018(14): e1803607.

Zhao, Z.; Liu, Y.; Wan, F., et al., Free-standing nitrogendoped graphene/Co(OH)2 composite films with superiorcatalytic activity for aprotic lithium-oxygen batteries, Chin.Chem. Lett. 2021(32): 594-597.

Wang, F.; Qiao, J.; Wang, J., et al., Multimetallic Core–Bishell Ni@Au@Pd nanoparticles with reduced grapheneoxide as an efficient bifunctional electrocatalyst for oxygenreduction/evolution reactions, J. Alloys Compd. 2019(811):3.

Wen, C.; Zhu, T.; Li, X., et al., Nanostructured Ni/Ti3C2TMXene hybrid as cathode for lithium-oxygen battery, Chin.Chem. Lett. 2020(31): 1000-1003.

Liu, X.; Huang, Q.; Wang, J., et al., In-situ deposition ofPd/Pd4S heterostructure on hollow carbon spheres asefficient electrocatalysts for rechargeable Li-O2 batteries,Chin. Chem. Lett. 2021(32): 2086-2090.

Ding, N.; Chien, S. W.; Hor, T. S. A., et al., Influence ofcarbon pore size on the discharge capacity of Li –O2batteries, J. Mater. Chem. 2014(A 2): 12433-12441.

Shui, J.; Du, F.; Xue, C., et al., Vertically Aligned N-DopedCoral-like Carbon Fiber Arrays as Efficient Air Electrodes forHigh-Performance Nonaqueous Li-O-2 Batteries, ACS Nano2014(8): 3015-3022.

Zhang, J.; Chen, X.; Lei, Y., et al., Highly rechargeablelithium oxygen batteries cathode based on boron andnitrogen co-doped holey graphene, Chem. Eng. J.2022(428):7.

Yi, L. C.; Ci, S. Q.; Sun, C. L., et al., Cathode Materials ofNon-Aqueous Lithium-Oxygen Battery, Progress inChemistry. 2016(28): 1251-1264.

Bui, H. T.; Kim, D. Y.; Kim, D. W., et al., Carbonnanofiber@platinum by a coaxial electrospinning and their improved electrochemical performance as a Li−O2 batterycathode, Carbon. 2018(130): 94-104.

Jeong, Y. S.; Park, J.-B.; Jung, H.-G., et al., Study on theCatalytic Activity of Noble Metal Nanoparticles on ReducedGraphene Oxide for Oxygen Evolution Reactions inLithium-Air Batteries, Nano Lett. 2015(15): 4261-4268.

Lu, Y.-C.; Xu, Z.; Gasteiger, H. A., et al., Platinum-GoldNanoparticles: A Highly Active Bifunctional Electrocatalystfor Rechargeable Lithium-Air Batteries, J. Am. Chem. Soc.2010(132): 12170-12171.

Choi, R.; Jung, J.; Kim, G., et al., Ultra-low overpotentialand high rate capability in Li–O2 batteries through surfaceatom arrangement of PdCu nanocatalysts, Energy Environ.Sci. 2014(7): 1362-1368.

Jung, H.-G.; Jeong, Y. S.; Park, J.-B., et al., Ruthenium-BasedElectrocatalysts Supported on Reduced Graphene Oxide forLithium-Air Batteries, ACS Nano. 2013(7): 3532-3539.

Wang, P.; Ren, Y.; Wang, R., et al., Atomically dispersedcobalt catalyst anchored on nitrogen-doped carbonnanosheets for lithium-oxygen batteries, Nat. Commun.11(2020): 1576.

Gao, R.; Li, Z.; Zhang, X., et al., Carbon-Dotted DefectiveCoO with Oxygen Vacancies: A Synergetic Design ofBifunctional Cathode Catalyst for Li–O2 Batteries, ACSCatalysis 6(2015): 400-406.

Lin, Y.; Yang, Q.; Geng, F., et al., Suppressing Singlet OxygenFormation during the Charge Process of Li-O2 Batteries witha Co3O4 Solid Catalyst Revealed by Operando ElectronParamagnetic Resonance, J. Phys. Chem. Lett. 2021(12):10346-10352.

Zhang, P.; Sun, D.; He, M., et al., Synthesis of Porousdelta-MnO2 Submicron Tubes as Highly EfficientElectrocatalyst for Rechargeable Li-O2 Batteries,ChemSusChem. 2015(8): 1972-1979.

Minowa, H.; Hayashi, M.; Hayashi, K., et al., Mn–Fe-basedoxide electrocatalysts for air electrodes of lithium–airbatteries, J. Power Sources. 2013(244): 17-22.

Li, P.; Zhang, J.; Yu, Q., et al., One-dimensional porousLa0.5Sr0.5CoO2.91 nanotubes as a highly efficientelectrocatalyst for rechargeable lithium-oxygen batteries,Electrochim. Acta. 2015(165): 78-84.

Ma, Z.; Yuan, X.; Li, L., et al., The double perovskite oxideSr2CrMoO(6-delta) as an efficient electrocatalyst forrechargeable lithium air batteries, Chem. Commun. (Camb.)2014(50): 14855-14858.

Zhu, X.; Pan, X.; Wu, Y., et al., Layered perovskite oxidePrBaCo2O5+δ as a potential cathode for lithium–oxygenbatteries: High-performance bi-functional electrocatalysts,Mater. Lett. 2019(237): 200-203.

Sun, B.; Chen, S.; Liu, H., et al., Mesoporous CarbonNanocube Architecture for High-PerformanceLithium-Oxygen Batteries, Adv. Funct. Mater. 2015(25):4436-4444.

Guo, X.; Liu, P.; Han, J., et al., 3D NanoporousNitrogen-Doped Graphene with Encapsulated RuO2Nanoparticles for Li-O2 Batteries, Adv Mater. 2015(27):6137-6143.

Lian, Z.; Lu, Y.; Ma, S., et al., Metal atom-doped Co3O4nanosheets for Li-O2 battery catalyst: Study on thedifference of catalytic activity, Chem. Eng. J.2022(445):98-109.

Li, J.; Zhou, H.; Jian, Z., et al., Improved ElectrocatalyticActivity of Three-Dimensional Open-StructuredCo3O4@MnO2 Bifunctional Catalysts of Li-O2 Batteries byInducing the Oriented Growth of Li2O2, ACS SustainableChemistry & Engineering. 2021(9): 5334-5344.

Lin, H.; Liu, Z.; Mao, Y., et al., Effect of nitrogen-dopedcarbon/Ketjenblack composite on the morphology of Li2O2for high-energy-density Li–air batteries, Carbon. 2016(96):965-971.

Cui, R.; Xiao, Y.; Li, C., et al., Polyaniline/reduced grapheneoxide foams as metal-free cathodes for stablelithium-oxygen batteries, Nanotechnology. 2020(31):445402.

Li, F.; Ohnishi, R.; Yamada, Y., et al., Carbon supported TiNnanoparticles: an efficient bifunctional catalyst fornon-aqueous Li-O2 batteries, Chem. Commun. (Camb.)2013(49): 1175-1177.

Cao, X.; Chen, Z.; Wang, N., et al., Defected molybdenumdisulfide catalyst engineered by nitrogen doping foradvanced lithium – oxygen battery, Electrochim. Acta2021(383): 2.

Sun, K.; Liu, M.; Yu, S., et al., In-situ grown vanadiumnitride coated with thin layer of nitrogen-doped carbon as ahighly durable binder-free cathode for Li–O2 batteries, J.Power Sources. 2020(460):6.




DOI: https://doi.org/10.33142/rams.v4i1.8461

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Wei WANG, Simin WANG, Longhai ZHANG, Sijiang HU, Xuyang XIONG, Tengfei ZHOU, Chaofeng ZHANG

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.