Structure evolution in undercooled CoCrNi medium entropy alloys by glass fluxing method
Abstract
Keywords
Full Text:
PDFReferences
J.W. Yeh. Recent progress in high-entropy alloys. European Journal of Control [J]. 2006(31): 633-648.
J.W. Yeh, S.K. Chen, S.J. Lin, et al. Nanostructured high‐ Entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials [J]. 2004(6): 299-303.
Y. Zhang, T.T. Zuo, Z. Tang, et al.. Microstructures and properties of high-entropy alloys. Progress in Materials Science [J]. 2014(61): 1-93.
B. Cantor, I.T.H. Chang, P. Knight. Microstructural development in equiatomic multicomponent alloys. Materials Science and EngineeringA [J]. 2004(213): 375-377.
J.W. Yeh, S.J. Lin, T.S. Chin. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with
multiprincipal metallic elements. Metallurgical and Materials Transactions A [J]. 2004(35): 2533-2536.
C.J. Tong, Y.L. Chen, J.W. Yeh, et al.. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical & Materials Transactions A [J]. 2005(36): 881-893.
B.S. Murty, J.W.; Yeh, et al.. Chapter 1–A Brief History of Alloys and the Birth of High-Entropy Alloys.M.Boston: Butterworth-Heinemann Press [D], 2014.
M.R. Chen, S.J. Lin, J.W. Yeh, et al.. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metallurgical and Materials Transactions A [J]. 2006(37):
-1369.
P.K. Huang, J.W. Yeh, T.T. Shun, et al.. Multi‐principal‐ element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials [J]. 2004(6): 74-78.
A. Poulia, E. Georgatis, A.E. Lekatou, et al.. Microstructure and wear behavior of a refractory high entropy alloy. International Journal of Refractory Metals and Hard Materials [J]. 2016(57): 50-63.
M.D. Zhang, L.J. Zhang, J.T. Fan, et al.. Novel Co-free CrFeNiNb0.1Tix high-entropy alloys with ultra high hardness and strength, Materials Science & Engineering A [J], 2019,764(9): 138212-138221.
W.Q. Dong, Z. Zhou, M.D. Zhang, et al.. Applications of high-pressure technology for high-entropy alloys: A review, Metals, 2019(9): 867.
X. M. Liu, J. T. Fan, X. S. Liu, et al.. Nonlinear vibration of Al-Al based high entropy alloy circular sandwich panel, AIP Advances, 2019, 9(3): 035351.
J. T. Fan, L. J. Zhang, G. Li, et al.. A novel high-entropy alloy with dendrite-composite microstructure and remarkable compression performance, Scripta Materialia, 2019(159): 18–23.
Y. Shi, B. Yang, P.K. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review.J. Metals - Open Access Metallurgy Journal.2017(7): 43.
X. S. Liu, R. Li, X.F. Fan, et al.. Excellent strength-ductility combination in Co36Cr15Fe18Ni18Al8Ti4Mo1 multi-principal element alloys by dual-morphology B2 precipitates strengthening,Journal of Materials Science & Technology [J]. 2023(134): 60–66.
A.X. Li, P.F. Yu, Y.P. Gao, et al.. Ultra-high strength and excellent ductility high entropy alloy induced by nano-lamellar precipitates and ultrafine grain structure, Materials Science & Engineering A [J]. 2023(862): 14428.
D.B. Miracle, O.N. Senkov. A critical review of high entropy alloys and related concepts. Acta Materialia [J].2017(122): 448-511.
M.H. Jiang, Y.P. Gao, Y.Y. Wang, et al.. Study on structure evolution of CoCrFeNi high entropy alloy in containerless processing using neutron differaction, Nuclear Analysis [J]. 2022(3): 100034.
Z. Wu, H. Bei, G.M. Pharr, et al.. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia [J]. 2014(81): 428-441.
C. Niu, A.J. Zaddach, A.A. Oni, et al.. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Applied. Physics. Letter [J].2015(106): 161906.
D.M. Herlach, Non-equilibrium solidification of undercooled metallic melts. Advances in Space Research [J].1991(12): 177.
C. Suryanarayana, Phase formation under non-equilibrium processing conditions: rapid solidification processing and mechanical alloying. Journal of Materials Science [J]. 2018(53): 13364-13379.
X. Bai, Y. Wang, C. Cao, Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy. Chinese Physics B [J]. 2018(27): 305-309.
A. Munitz, A. Venkert, P. Landau, et al.. Microstructure and phase selection in supercooled copper alloys exhibiting metastable liquid miscibility gaps. Journal of Materials Science [J]. 2012(47) 7955-7970.
J.H. Perepezko. Solidification of highly supercooled liquid metals and alloys. Journal of Non-Crystalline Solids [J]. 1993(2): 463-472.
J.H. Perepezko, G. Wilde. Amorphization and alloy metastability in undercooled systems. Journal of Non-Crystalline Solids [J]. 2000(274): 0-281.Research and Application of Materials Science Vol. 4 No.2 2022 9
T. David. Kinetics of Solidification of Supercooled Liquid Mercury Droplets. Journal of Chemical Physics [J]. 1952(20): 411-424.
J.S. Li, W.J. Jia, J. Wang, et al.. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by
supercooling method. Materials and Design [J].2016(95): 183–187.
R. Li, X.S Liu, P.F. Yu, et al.. Unveiling the phase evolution and mechanical properties of Ni1.5Co1.5CrTix alloy
composites with ultrafine/nano structure, Materials and Design [J]. 2022(223): 111165
L.L. Lacy, M.B. Robinson, T.J. Rathz. Containerless undercooling and solidification in drop tubes. Journal of
Crystal Growth [J]. 1981(51): 47-60.
W.H. Hofmeister, M.B. Robinson, R.J. Bayuzick. Undercooling of pure metals in a containerless, microgravity environment. J. Applied Physics Letters [J]. 1986(49): 1342-1344.
J.S. Li, W.J. Jia, J. Wang, et al.. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method. Materials & Design [J]. 2016(95): 183-187.
A.M. AMullis, P.C. Bollada, P.K. Jimack, Phase-Field Modelling of Intermetallic Solidification. M. TMS 2018
th Annual Meeting & Exhibition Supplemental Proceedings [D], 2018.
Y.L. Liu, L. Luo, Z.S. Ming, et al.. Microstructure and mechanical properties of Al-5.5Fe-1.1V-0.6Si alloy solidified under near-rapid cooling and with Ce addition. Rare Metals [J]. 2018(12): 1070-1075.
J. Wang, T. Guo, J. Li, et al.. Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy. Materials Chemistry and Physics [J]. 2018(210): 192-196.
X. Hao, Y.G. Li, Y. Hu, et al.. Effect of the Third Element Ni on the Solidification Microstructure of Undercooled Cu-40 wt.% Pb Monotectic Alloy Melt. Advances in Materials Science and Engineering [J]. 2019(2): 1-7.
J. Wang, G. Tong, J. Li, et al.. Microstructure and mechanical properties of non-equilibrium solidified
CoCrFeNi high entropy alloy. Materials Chemistry and Physics [D], 2017.
R.D. Li, P.D. Niu, T.C. Yuan, et al.. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy:
Processability, non-equilibrium microstructure and mechanical property. Journal of Alloys and Compounds: An
Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics [D], 2018.
Q. Gao, X.S. Jiang, H.L. Sun, et al.. Effect mechanism of cryogenic treatment on ferroalloy and nonferrous alloy and their weldments: a review. Materials Today Communications [J]. 2022(1): 104830.
X.W. Hong, C.H. Hsueh. Effects of yttrium addition on microstructures and mechanical properties of CoCrNi
medium entropy alloy. Intermetallics [J]. 2022(140): 107405.
H.W. Deng, Z.M. Xie, B.L. Zhao, et al.. Tailoring mechanical properties of a CoCrNi medium-entropy alloy by controlling nanotwin-HCP lamellae and annealing twins. Materials Science and Engineering [J]. 2019(744): 241-246.
J.P. Liu, J.X. Chen, T.W. Liu, et al.. Superior strength-ductility CoCrNi medium-entropy alloy wire.
Scripta Materialia [J].2020(181): 19-24.
B. Gwalani, T. Torgerson, S. Dasari, et al.. Influence of fine-scale B2 precipitation on dynamic compression and wear properties in hypo-eutectic Al0.5CoCrFeNi high-entropy alloy. Journal of Alloys and Compounds: An
Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics [J]. 2021, 853(1): 5.
Z.Y. Jia, S.Z. Zhang, J.T. Huo, et al.. Heterogeneous precipitation strengthened non-equiatomic NiCoFeAlTi
medium entropy alloy with excellent mechanical properties. Materials Science and Engineering [J]. 2022(834):142617.
L. Zhang, X. Du, L. Zhang, et al.. Achieving ultra-high strength in a precipitation-hardened CoCrNi-based medium-entropy alloy with partially recrystallized microstructure and heterogeneous grains [J]. Vacuum, 2021, 188(28):110169.
DOI: https://doi.org/10.33142/rams.v4i2.8464
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Subo YU, Aleksandr SHERSTNEV, Mikhail MARKOVSKII, Daria KATAITSEVA, Gong LI
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.